Lung Cancer: From DNA to Surgery

Luca Bertolaccini, MD PhD FECTS

Division of Thoracic Surgery

S. Croce e Carle Hospital, Cuneo
Lung Cancer

- Uncontrolled growth of malignant cells
 - One or both lungs
 - Tracheo-bronchial tree
- Result of repeated carcinogenic irritation
 - ↑ rates of cell replication
- Proliferation of abnormal cells leads
 - Hyperplasia
 - Dysplasia
 - Carcinoma in situ
Epidemiology of Lung Cancer

• According to 2009 statistics
 – 173,770 new cases
 – 160,440 deaths yearly
• Lung cancer deaths > Prostate + breast + colorectal cancers deaths
• ↓ incidence & deaths in men
• ↑ incidence & deaths in women
Women & Lung Cancer

- 80,660 new cases
 - 12% of all new cases
- 68,510 deaths
 - ↑ 150% between 1974 and 1994
- Women more prone to tobacco effects
 - 1.5x lung cancer than men with same smoking habits
Where Does it Come From?

- Radiation Exposure
- Smoking
- Environmental/Occupational Exposure
 - Asbestos
 - Radon
 - Passive smoke
Smoking Facts

- Tobacco use
 - Leading cause of lung cancer
- 87% of lung cancers related to smoking
- Risk related to
 - Age of smoking onset
 - Amount smoked
 - Gender
 - Product smoked
 - Depth of inhalation
Diagnosis

- History and Physical exam
- Diagnostic tests
 - Chest X-ray
 - Biopsy
 - Bronchoscopy
 - Needle biopsy
 - Surgery
- Staging tests
 - CT chest/abdomen
 - CT brain
 - PET scan
Symptoms

- Cough
- Dyspnea
- Haemoptysis
- Recurrent infections
- Chest pain
<table>
<thead>
<tr>
<th>Syndromes/Symptoms Secondary to Regional Metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Esophageal compression</td>
</tr>
<tr>
<td>– Dysphagia</td>
</tr>
<tr>
<td>• Laryngeal nerve paralysis</td>
</tr>
<tr>
<td>– Hoarseness</td>
</tr>
<tr>
<td>• Symptomatic nerve paralysis</td>
</tr>
<tr>
<td>– Horner’s syndrome</td>
</tr>
<tr>
<td>• Cervical/thoracic nerve invasion</td>
</tr>
<tr>
<td>– Pancoast syndrome</td>
</tr>
<tr>
<td>• Lymphatic obstruction</td>
</tr>
<tr>
<td>– Pleural effusion</td>
</tr>
<tr>
<td>• Vascular obstruction</td>
</tr>
<tr>
<td>– SVC syndrome</td>
</tr>
<tr>
<td>• Pericardial/cardiac extension</td>
</tr>
<tr>
<td>– Effusion & tamponade</td>
</tr>
</tbody>
</table>
Two Lung Cancer Cells, Classified

- **Non Small Cell Lung Cancer (NSCLC)**
 - Adenocarcinoma
 - Squamous Cell Carcinoma
 - Large Cell Carcinoma

- **Small Cell Lung Cancer (SCLC)**
 - Oat Cell
 - Intermediate
 - Combined
New T Definitions (T1)

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed, or tumor proven by the presence of malignant cells in sputum or bronchial washings but not visualized by imaging or bronchoscopy</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor ≤3 cm in greatest dimension, surrounded by lung or visceral pleura, without bronchoscopic evidence of invasion more proximal than the lobar bronchus (i.e., not in the main bronchus)*</td>
</tr>
<tr>
<td>T1a</td>
<td>Tumor ≤2 cm in greatest dimension</td>
</tr>
<tr>
<td>T1b</td>
<td>Tumor >2 cm but ≤3 cm in greatest dimension</td>
</tr>
</tbody>
</table>
New T Definitions (T2 – T4)

<table>
<thead>
<tr>
<th>T2</th>
<th>Tumor >3 cm but ≤ 7 cm or tumor with any of the following features (T2 tumors with these features are classified T2a if ≤ 5 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Involves main bronchus, ≥ 2 cm distal to the carina</td>
</tr>
<tr>
<td></td>
<td>Invades visceral pleura</td>
</tr>
<tr>
<td></td>
<td>Associated with atelectasis or obstructive pneumonitis that extends to the hilar region but does not involve the entire lung</td>
</tr>
</tbody>
</table>

| T2a | Tumor >3 cm but ≤ 5 cm in greatest dimension |
| T2b | Tumor >5 cm but ≤ 7 cm in greatest dimension |

| T3 | Tumor >7 cm or one that directly invades any of the following: chest wall (including superior sulcus tumors), diaphragm, phrenic nerve, mediastinal pleura, parietal pericardium; or tumor in the main bronchus <2 cm distal to the carina" but without involvement of the carina; or associated atelectasis or obstructive pneumonitis of the entire lung or separate tumor nodule(s) in the same lobe |

| T4 | Tumor of any size that invades any of the following: mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, esophagus, vertebral body, carina; separate tumor nodule(s) in a different ipsilateral lobe |

Stade II
TNM

<table>
<thead>
<tr>
<th>Sixth Edition T/M Descriptor</th>
<th>Proposed T/M</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (≤2 cm)</td>
<td>T1a</td>
<td>IA</td>
<td>IIA</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T1 (>2–3 cm)</td>
<td>T1b</td>
<td>IA</td>
<td>IIA</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T2 (≤5 cm)</td>
<td>T2a</td>
<td>IB</td>
<td>IIA</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T2 (>5–7 cm)</td>
<td>T2b</td>
<td>IIA</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T2 (>7 cm)</td>
<td>T3</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T3 invasion</td>
<td></td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T4 (same lobe nodules)</td>
<td>T4</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIIB</td>
</tr>
<tr>
<td>T4 (extension)</td>
<td>M1a</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>M1 (ipsilateral lung)</td>
<td>M1b</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>T4 (pleural effusion)</td>
<td></td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>M1 (contralateral lung)</td>
<td></td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>M1 (distant)</td>
<td></td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
</tbody>
</table>
Histo-pathological Factors

- Histological type
- Grade
- Lymphatic Invasion
- Blood vessel invasion
- Necrosis
- Cytokeratin expression
Table 2. Significant Prognostic Factors Revealed by Univariate Analyses in Surgically Resected Nonsmall Cell Lung Carcinoma Patients

<table>
<thead>
<tr>
<th>Poor prognostic factors</th>
<th>No.</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>33</td>
<td>0.027</td>
</tr>
<tr>
<td>pN1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>pN2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>24</td>
<td>0.009</td>
</tr>
<tr>
<td>Perineural invasion (+)</td>
<td>10</td>
<td>0.02</td>
</tr>
<tr>
<td>Perineural invasion (-)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion (+)</td>
<td>9</td>
<td>0.01</td>
</tr>
<tr>
<td>Lymphatic invasion (-)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Perineural invasion (+)</td>
<td>8</td>
<td>0.05</td>
</tr>
<tr>
<td>Perineural invasion (-)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion (+)</td>
<td>15</td>
<td>0.04</td>
</tr>
<tr>
<td>Lymphatic invasion (-)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Perineural invasion (+)</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Perineural invasion (-)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion (+)</td>
<td>13</td>
<td>0.31</td>
</tr>
<tr>
<td>Lymphatic invasion (-)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>45</td>
<td>0.027</td>
</tr>
<tr>
<td>Positive</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Perineural invasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>58</td>
<td>0.0148</td>
</tr>
<tr>
<td>Positive</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Molecular Staging

- Gene alterations in 50% of NSCLC
- Tumor response to anticancer therapies based on apoptosis induction
 - Active p53 as important modulator of DNA-damage-induced apoptosis
EGFR

Ligand binding and dimerization

Other receptor tyrosine kinases (e.g., IGF-1R, c-Met)

Gene transcription, cellular effects

Proliferation, Invasion, Metastasis, Resistance to apoptosis, Angiogenesis

Hypoxia

EGFR

LKB1
AMPK
TSC2

PI3K
Ras
Raf
Mek

mTOR
HIF-1α

mTOR

Gene transcription, cellular effects

Proliferation, Invasion, Metastasis, Resistance to apoptosis, Angiogenesis

S. Croce e Carle Hospital, Cuneo (Italy)
Molecular Markers of Prognosis

<table>
<thead>
<tr>
<th>p53</th>
<th>Cyclin A</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>PCNA</td>
</tr>
<tr>
<td>erbB2</td>
<td>16</td>
</tr>
<tr>
<td>ERCC1</td>
<td>RASS1A</td>
</tr>
<tr>
<td>RRM1</td>
<td>FHIT</td>
</tr>
<tr>
<td>PTEN</td>
<td>k-ras</td>
</tr>
<tr>
<td>ErbB-1</td>
<td>DNA methylation</td>
</tr>
</tbody>
</table>
Pathologically and Genotipically Tailored Surgical Therapy?

TABLE 2. Molecular Tests with Prognostic and Predictive Significance

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Prognosis</th>
<th>Prediction</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR mutation (exon 19 deletion v. exon 21 missense)</td>
<td>Better</td>
<td>Higher chance of responding to EGFR tyrosine kinase inhibitors</td>
<td>II</td>
</tr>
<tr>
<td>EGFR amplification</td>
<td>Better</td>
<td>Higher chance of responding to EGFR tyrosine kinase inhibitors</td>
<td>II</td>
</tr>
<tr>
<td>EGFR IHC positive</td>
<td>Worse</td>
<td>Higher chance of responding to EGFR tyrosine kinase inhibitors</td>
<td>II</td>
</tr>
<tr>
<td>KRAS mutation</td>
<td>Worse</td>
<td>No benefit from adjuvant cisplatin + vinorelbine, lower chance of responding to EGFR tyrosine kinase inhibitors</td>
<td>II</td>
</tr>
<tr>
<td>ERCC1 IHC positive</td>
<td>Better</td>
<td>No benefit from adjuvant cisplatin-based chemotherapy, less responsive to cisplatin</td>
<td>II</td>
</tr>
<tr>
<td>RRM1 IHC positive</td>
<td>Better</td>
<td>Less responsive to gemcitabine</td>
<td>II</td>
</tr>
<tr>
<td>p27 IHC positive</td>
<td>Better</td>
<td>No benefit from adjuvant cisplatin-based chemotherapy</td>
<td>II</td>
</tr>
<tr>
<td>ERCC1 and p27 “double-positive” by IHC</td>
<td>Better</td>
<td>No benefit from adjuvant cisplatin-based chemotherapy</td>
<td>II</td>
</tr>
<tr>
<td>ERCC1 and RRM1 “double-positive” by AQUA</td>
<td>Better</td>
<td>Less responsive to cisplatin and gemcitabine</td>
<td>II</td>
</tr>
<tr>
<td>MRP2 IHC positive</td>
<td>Worse</td>
<td>?</td>
<td>II</td>
</tr>
<tr>
<td>FasL-negative by IHC</td>
<td>?</td>
<td>More benefit from cisplatin-based adjuvant chemotherapy</td>
<td>II</td>
</tr>
<tr>
<td>High bTubIII by IHC</td>
<td>Worse</td>
<td>More benefit from adjuvant cisplatin + vinorelbine</td>
<td>II</td>
</tr>
<tr>
<td>“High-Risk” gene expression profile (various platforms)</td>
<td>Worse</td>
<td>?</td>
<td>II</td>
</tr>
</tbody>
</table>

Level I evidence has been validated by data from a prospective, randomized trial. Level II evidence is based on retrospective cohort studies.

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homolog; ERCC1, excision repair cross-complementation group 1; RRM1, ribonucleotide reductase subunit 1; MRP2, multidrug resistance protein 2; FasL, ligand for tumor necrosis factor receptor superfamily member 6; bTubIII, class III beta-tubulin.
Staging for NSCLC

- CT
- PET
- EBUS vs. Mediastinoscopy
Stage III Lung Cancer
N2 Disease

- Mediastinal Nodes
 - 40% nodes >2 cm do NOT contain cancer
 - 40% of nodes with cancer <1 cm
Stage III Lung Cancer
N2 Disease

- CT scan \rightarrow cT1 N0
 - 10% N2 disease
 - 5% found on PET

- CT scan \rightarrow cT2 N0
 - 25% N2 disease
 - 15% found on PET
N2 Lung Cancer
PET Scan

- Downstage: 12%
- Upstage: 36%
- Change treatment: 67%
- False positive: 35%
- Nodes must be biopsied
Mediastinal Nodes

<table>
<thead>
<tr>
<th></th>
<th>EBUS</th>
<th>CT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>92%</td>
<td>76%</td>
<td>80%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>55%</td>
<td>70%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>98%</td>
<td>61%</td>
<td>73%</td>
</tr>
</tbody>
</table>
Pre-operative Lymph Node Staging

• Direct surgical choices
 – Positive mediastinal lymph node not candidates for resection

• Staging necessary
 – Determining prognosis
 – Compare studies
Staging of Mediastinal Lymph Nodes

- **Non invasive**
 - CT
 - MRI
 - PET
 - Integrated PET-CT

- **Invasive**
 - Non surgical
 - TTNA – TBNA
 - EBUS – FNA
 - EUS – FNA
 - Surgical
 - Mediastinoscopy
 - VATS
 - Intra-operative
 - Sampling
 - Complete dissection
Mediastinoscopy should be done...

ESTS Guidelines

• All centrally located lung tumours
• All positive PET-scan lymph node
• Lymph node >16 mm on CT
 – 21% probability of N2 disease
• Omitted
 – Peripheral lesion with negative PET scan
Transbronchial and Transesophageal Needle Aspiration

- TBNA (EBUS-FNA)
 - U/S guided bronchoscopy with FNA
- EU/S - FNA
Mediastinoscopy
Mediastinoscopy

• Gold standard for invasively staging the mediastinum
 – Patients with known or suspected lung cancer

• Stations accessible by standard cervical mediastinoscopy
 – 2
 – 3
 – 4
 – 7
Mediastinoscopy

- Position
 - Supine position
- Preparation from chin to umbilicus, nipple to nipple
- Both arms are tucked to the side
- Extend the neck as far as possible
Mediastinoscopy

- Relationship of major vascular structures to the pretracheal space
Mediastinoscopy

- Orientation is provided by tracheal rings and tracheal bifurcation
- Lymph nodes dissected out using metal suction tip
Risks of Operation

- Operation Site
- Extent of operation
- Patients’ reserve
- Anesthesia
- Operator skill
Lung Function Test in Surgery Patients

• Indication
 – All Chest surgery patients
 – History of lung/airway disease
 – Heavy smoker
 – Exertional dyspnea

• Risks evaluation
 – Peri-operation
 – Subacute, long-term

• Avoid pulmonary complication
Preoperative Evaluation

• Identifying patients at risk
 – Evaluating risk
 • Finding modified factors to decrease risk
 – Detailed medical history, physical examination
 – Patient’s functional capacity
 • Degree of limitation of activity
 • Pulmonary function testing
 – Spirometry, lung volumes, diffusing capacity, oximetry, and arterial blood gases
 – Radionuclide lung scanning
 – Exercise testing
 – Invasive pulmonary hemodynamic measurements
• Risk stratification analysis
Spirometry

• Maximal voluntary ventilation <50% of predicted and FVC <70% of predicted
 – Associated with 40% risk for death
• FEV1
 – Most common PFT used for prediction
 – Accounts for variability in gender and size of patients for lung resection
 – Incidence of postoperative pulmonary complications
 • FEV1 <2 L 40%
 • FEV1 >2 L 19%
Spirometry for Lung Resection

• Pneumonectomy
 – FEV1 >2 L
 – MVV >55% of predicted

• Lobectomy
 – FEV1 >1 L
 – MVV >40% of predicted

• Segmentectomy or wedge resection
 – FEV1 >0.6L
 – MVV >40% of predicted
DLCO

- Independent predictor of postoperative outcome
- Reflects alveolar membrane integrity & pulmonary capillary blood flow in patient’s lungs
- DLCO ≥70% predicted much lower postpneumonectomy complication rate
- Low DLCO identifies patients with significant emphysema, and reduced pulmonary capillary vascular bed
 - Postoperative pulmonary hypertension
 - Arrhythmia
 - Cardiac dysfunction
Quantitative Lung Scan

- ppoFEV1 = preoperative FEV1 x % of radioactivity contributed by non-operated lung
- ppoFEV1 = preoperative FEV1 x (1-[S x 5.26] /100)
 - S: number of broncho-pulmonary segments involved
- Predicted postoperative FEV1 <1 L
 - Physiologic inoperability
- Predicted postoperative FEV1 <0.8 L
 - Surgical inoperability
 - COPD with CO2 retention
Pulmonary Exercise Test (PXT)

- Low ppoFEV1 <0.8 – 1 L or 35 – 40% of predicted values
 - Exercise testing
- Stresses entire cardiopulmonary & oxygen delivery systems
Oxygen Uptake

- VO2 related to
 - Age, sex, weight, and type of work performed
- VO2 max >20 mL/kg/min tolerate surgery
 - Acceptable morbidity and mortality
Stage I

- Includes IA and IB (tumors <3 cm and <5 cm)
 - No lymph nodes involved
 - Tumor >2 cm from carina
Surgical Management of Stage I NSCLC

- Best treated with surgery
- Lobectomy with mediastinal lymph nodes dissection
 - Preferred procedure
- If lymph nodes negative no further post-op treatment needed
- 5y survival 70% (60-80%)
Stage II NSCLC

- Stage II includes T1 & T2 with N1
 - Lobectomy or pneumonectomy with lymph nodes dissection
 - Sleeve lobectomy option for centrally located small tumors
- Overall 5y survival
 - 45% for IIA
 - 33% for IIB
Surgery for Stage IIIA NSCLC

- T1 – T4 with N2 (N1) involvement
- Lymph nodes MTS most important factor affecting treatment and prognosis
- cN2 bad results with surgery
 - Rush 11600 pts, 5y survival 16%
 - Mountain 540 pts, 5y survival 23%
- pN2 better results
 - Pearson 41%
Surgery for Stage IIIA NSCLC

• Biopsy of mediastinal lymph nodes always be done pre-operatively
• We operate pts with negative mediastinal lymph nodes
• Stage IIIB or IIIA N2 should have pre-op chemo-radiation and re-stage
• Overall 5y survival
 – 44% for T3 N0
 – 26% for T3 N1
Surgery or No Surgery for N2?

• Most thoracic oncologist and surgeons agreed that N2 disease in multiple levels should be treated with chemo-radiation (Ch/R).

• Most surgeon also believe that down staged or minimal stage N2 disease, if considered resectable after Ch/R, surgery is beneficial.
Role of Surgery after Neoadjuvant Treatment

• For responders
 – Surgical resection beneficial and increase survival

• Restaging to identify responders
 – EBUS-FNA, CT-PET, re-mediastinoscopy

• No surgery for N2 disease
 – 25% 5y survival for N0

• Morbidity & mortality increased
 – Right pneumonectomy
Surgery for T3 with Chest Wall Involvement

- If surgical candidates
 - complete resection is the aim
- Resection should be en-block
 - Clear margin of infiltrated chest wall
Operative Planning

• Anesthesia
 – Hilar dissection facilitated by unilateral lung ventilation
 – Double – lumen ET tubes and bronchial blockers isolate ipsilateral lung
 – Care must be taken with tube placement with centrally located tumors
 • Inadvertent trauma to endobronchial tumor lead to significant bleeding
Patient Positioning

- Lateral decubitus position, table flexed just cephalad to superior iliac crest
- If anterior thoracotomy or sternotomy planned,
 - Patient in supine position, with pillow placed in such a way as to elevate area of thorax that will be operated on
Patient Position – Posterior View
Patient Position – Postero-Lateral View
Incisions

• Postero-lateral incision
 – Standard for anatomic pulmonary resections

• Variety of smaller incisions
 – Posterior muscle sparing, anterior muscle sparing, axillary thoracotomies

• Thorax is entered at the 5th intercostal space
 – Affords excellent exposure to hilar structures
Right Pulmonary Hilar Anatomy

- Truncus anterior
- Right main bronchus
- Right pulmonary artery
- Right superior pulmonary vein
- Right inferior pulmonary vein
- Posterior ascending segmental artery
- Superior segmental artery
- Middle lobar pulmonary artery
- Basilar pulmonary artery

S. Croce e Carle Hospital, Cuneo (Italy)
Right Upper Lobectomy
Right Upper Lobectomy
Right Upper Lobectomy
Right Upper Lobectomy

- Right upper lobe
- Posterior ascending artery
- Interlobar pulmonary artery
Right Upper Lobectomy
Sleeve RUL Lobectomy
RUL with SVC Substitution
Reconstruction of Left PA
Reconstruction of Left PA
Pancoast Tumor
Reconstruction of Left PA
Chest Wall Cancer

S. Croce e Carle Hospital, Cuneo (Italy)
Chest Wall Cancer
Complications

- Bronchopleural fistula
- Empyema
- Hemorrhage
- Sputum retention
- Atrial fibrillation
- Persistent air leak
- Pain
Video Assisted Thoracoscopy

• Diagnostic
 – Operative staging
 – Wedge lung
 – Mediastinal biopsy
• Therapeutic
 – Major pulmonary resection
• Palliative
 – Sclerotherapy
 – Pericardial window
VATS Lung Resection

- Utility thoracotomy
- Manipulation with blunt forceps, open thoracotomy instruments
- Location of nodule (finger palpation)
- Dissection of fissures
- Vessels encircled with ties, then tied/stapled
- Bupivicaine to trocar sites
Surgical incisions
VATS Advantages

- Lower morbidity
- Reduced time for chest drainage
- Shorter hospital stay
- Patient acceptance (cosmetics)
Challenges in VATS

- Complications of endoscopic surgery
- Incomplete fissures
- Pain
- Mirror imaging
- Port site recurrence
Mobilize Anterior Trunk
Staple Anterior Trunk
VATS Lobectomy
Indications

• Usual cancer indications for lobectomy, plus
 – Clinical stage I cancer
 – Tumor <8 cm
• Benign disease (bullae, bronchiectasis, etc)
VATS Lobectomy

Contraindications

- Pancoast Tumors
- Extensive chest wall involvement
- EPP
- Vascular Sleeve
- Surgeon discomfort
VATS vs. Thoracotomy

- Fewer complications
- Less pain
- Better quality of life
- Better PFTs
- Less pneumonia
- Earlier recovery
- Easier for octogenarians
VATS vs. Thoracotomy

- Less lab charges
- Less anesthesia charges
- Less disposable equipment charges
- Less hospital charges
- Less complications
VATS vs. Thoracotomony
Recovery

- VATS
 - Earlier return to full activities
- VATS
 - Better short and long term QOL
VATS Lobectomy
Immunologic Impact

- Reduced stress response
- Reduced post-op C-reactive protein
- Reduced IL6, IL8, IL10 levels
- Enhanced cellular immune function
 - Better neutrophil and monocyte function
Conclusions

• VATS Lobectomy
 – True anatomic resection
 – Node dissection via minimally invasive surgery

• VATS Lobectomy
 – Safe procedure
 – Complete cancer operation
VATS vs. Thoracotomy

- VATS lobectomy should be standard of care for early stage lung cancer
Take Home Messages

• Surgery the best for stage I & II

• Accurate staging
 – Localized disease and Complete Resection requirements for cure

• Pre-op detected N2 disease poor surgical prognosis

• Re-evaluation after CT/RT for possible surgical excision is important option